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APPLICATION OF CONTINUOUS THERMODYNAMICS TO 
THE STABILITY OF POLYMER SYSTEMS. II 

SIBILLE BEERBAUM, JOACHIM BERGMANN, HORST KEHLEN, 
and MARGIT T. RATZSCH 

Mathematics Department 
“Wolfgang Ratke” Pedagogical University 
Kothen 4370; 

Chemistry Department 
“Carl Schorlemmer” Technical University 
Merseburg 4200, German Democratic Republic 

ABSTRACT 

A determinant criterion for the critical state in solutions and mixtures 
of polydisperse polymers is established within the general framework 
of Gibbs theory. The treatment continues an earlier paper by consider- 
ing more general Gibbs free energy relations: The function replacing 
the X-term in the classic Flory-Huggins equation is permitted to depend 
on a finite number of moments of the polymer distribution(s) so as to 
embrace most Gibbs free energy relations of practical use. The new 
criterion leads to  a very large reduction of computer time and of needed 
storage capacity compared to the traditional Gibbs determinant criterion. 
Some relations known from the literature are shown to be special cases 
of the established new criterion. 

INTRODUCTION 

In a preceding paper [ 1 J the thermodynamic stability of solutions and mix- 
tures of polymers was described by Gibbs free energy functions resulting from 
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1446 BEERBAUM ET AL. 

the classic Flory-Huggins expression [2,3] by replacing the x-term by a func- 
tion G , which is assumed to depend on the temperature T, the pressure P, 
and the segment fractions $i (i = 1, . . . ,N) of the N solvents and polymers 
(Z $i = 1 ; the symbol Z without limits refers in this paper to from i = 1 to 
i = N). In many cases, however, a more detailed description of the thermo- 
dynamic behavior will be possible by permitting E to depend additionally 
on the MW distribution(s) of the polymer(s) present in the system. 

In practice, the consideration of some moments with respect to the seg- 
ment numbers ri(M) is especially important. Hence, in this paper, the stabil- 
ity conditions are generalized to 

= E  

functions of the kind 

with 

The conditions are considered in the framework of continuous thermo- 
dynamics describing the composition of a polymer by a continuous distribu- 
tion density function instead of the amounts of the individual species [4,5]. 
In this paper a distribution density function W@) is applied that is defined 
by the statement that Wt(M)dM gives the segment fraction of all i-species 
with MW between M and M t alM within the polymer i. Hence, .f Wi(ln)dM 
= 1. The integrals are always to be extended over the totalM-range occurring 
for Polymer i, fromMo,j up to psi. If i does not designate a polymer but a 
solvent, then the relation Wi(w = (v9' - M0,j)-' is to be applied and, of 
course, rj(M) = rj = constant. The quantities ki,are real numbers including 
the number ki, = 0 (i = 1, . . . , N), resulting in r l i  = $i, and R means the 
universal gas constant. The number of moments for the polymer i occurring 
in Eq. (1) is signified by ni. If ni = 1 (i = 1, . . . , N), then Eq. (1) reduces to 
the case considered earlier [ I ] .  The functions ri(M) are presumed to attain 
at least ni different values; such segment number functions will be called "non- 
degenerate" (with respect to the G 

(l), resulting in 

= E  relation Eq. 1). 
According to ZTli = 1, the quantity Fl = q1 may be eliminated in Eq. 

- 1  - N  Z E  = r (T,P,T2l , .  . . ,rnl , . . . , r l  , . . . 
- = E  - 1  - N  G = r(T,P,; l2 , .  . . , rn2  , . . . , r l  , . . . ,rnNN)RT, nl = 1. (3') 
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APPLICATION OF CONTINUOUS THERMODYNAMICS. II 1447 

The functions r and are interrelated by 

N - 
r(T,P,FZ1,. . . ,rnN N ) = F ( T , P , ~  -XT~',F~~+. . . ,~n,">. (4) 

i= 2 
- 

The Gibbs free energy per mole of segments, c, reads [4,5] 

neglecting terms depending linearly on JljWj(M) since these terms are im- 
material in considering stability. Also here, the transformation to the corre- 
sponding formula discussed earlier (Eq. 32 in Ref. 1) is immediately possible 
by considering the first I components i = 1 ,  . . . , I as solvents and neglecting 
additional linear terms. 

The following considerations for obtaining a critical state criterion are 
based on the necessary conditions established earlier [ 6 ] .  If the thermo- 
dynamic system described by (T,P;JIW) and obeying Eqs. (1)-(5)  is located 
on the limit of instability (spinodal), then 

S~E(TQ;JIW,G(JIW))> o for all variations S(JIW), (6 )  

and there exist such variations S ( J I W ) o  f 0 that 

S2E(T,P;JIW,S(JIW)o) = 0.  (7) 

If the system mentioned is in a critical state, then additionally 

Here JI W and S(JI W) designate the N-component vectors (I) W1, . . . , JINWN) 
and 
The variations S2G and S3G may be obtained from Eqs. (3)-(5) and read 

W,), . .L, ~ ( J I N E N ) ) ,  respectively, where I :JS(JI iW@4))dM= 0. 
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1448 BEERBAUM ET AL. 

Yai = j' [ r i ( ~ ) ~  kja ~ ( $ i w i ( ~ ) ~ -  

For n, = 1, the corresponding sums are omitted (6ii = 1 if i = j and zero other- 
wise). 

In the next paragraph a determinant criterion for the limit of instability 
(spinodal equation) is given that is equivalent to Eqs. (6)  and (7) but much 
simpler. This criterion will also be part of the critical state criterion to be 
stated and proved afterwards. Finally, several equations for the critical state 
as known from the literature will be shown to be special cases of the new 
critical state criterion. 

STAB1 LlTY CRITERION 

To formulate the stability criterion, some symbols will be introduced: 
d designates the ni X nj matrix with the elements 

Jli wi(M)dM (1 1) 
kia +kib + 1 

<bi lrdM)l 

The elements of the matrix inverse to $ are signified by robi. The symbol Q 
means a symmetric matrix with n = C ni - 1 lines and columns and the follow- 
ing block structure: 

Q =  

Q1' Q12 . . .  Q" 

Q2' Q22  . . .  Q2N 
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APPLICATION OF CONTINUOUS THERMODYNAMICS. II  1449 

0 

Here the quantities Qij are rectangular (nj - 6 i )  X (nj - 6 1 j )  matrices with the 
elements 

rrr 

, c =  

i, j = 1 , .  . . , N ;  a = 1 t 6 , i , .  . . , ni; b = 1 t t i l j ,  . . . , nj. 

For n1 = 1, the first block line and the first block column of Q are omitted. 
Then, as shown earlier [7], the following theorem is valid. 

then Eqs. (6)  and (7) are equivalent to 
Stability Criterion. If the functions ri(M) (i  = 1, . . . , N) are nondegenerate, 

Q = positive semidefinite, (6') 

lQl = 0 (spinodal equation). (7') 

Here lQl is the determinant of the matrix Q.  Equation (7') is equivalent to 
spinodal equations referring to the nonreduced problem as established by 
Eqs. (l), (2), and (5): 

N NN 

I Z t R C  I = O  or I k ' t c " I = O .  
N N  N 

Here Z, R, C are (n t 2) X (n t 2 )  matrixes, where 7 means the unit matrix 

and R" and c" are defined by 

- 
R =  

-1 (?)T (c"2)T . . . (C "N ) T 

N 51 2;" 3 2  . . .  

E 2  z 2 1  E 2 2  . .  . 2;2N 

The symbols c"' and c"abii are given by c"' = (1, 0, . . . , O)T E R"f and = 

a2F//ara'arbr (a = 1 ,  . . . , ni; b = 1 ,  . . , , nj). It has to be pointed out that the 
- .  - .  

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
8
:
1
7
 
2
4
 
J
a
n
u
a
r
y
 
2
0
1
1



1450 BEERBAUM ET AL. 

condition of definity, Eq. (6'), is to be verified with respect to Q and not to 
e"=R"-l +z 

CRITICAL STATE CRITERION 

Similarly as in the classic treatment dating back to Gibbs [ 8 ] ,  a determin- 
ant lQl 1 is introduced being derived from lQl according to (nl > 2): 

Qi = 

t' t2 . . .  t N  

. . .  Q -  Q -  Q -  

Q 2 1  Q 2 2  . . .  Q N  

IN 1 1  12  

Q N ~  QNZ . .  . QNN 

In this paper, matrices resulting from Q or di by neglecting the line a and 
the column b will be desipated by Q(a,b) or @j(a,b), respectively. Especially 
the abbreviation Q f  = @'( 1 ,-), (j = 1 ,  . . . , I?) is applied, The line vectors 
P are defined by 

The derivatives D . . . ID . . . of a determinant obey the well-known rules for 
partial differentiation with the distinction that 
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APPLICATION OF CONTINUOUS THERMODYNAMICS. II  1451 

with 

Fief = 1 [ri(m] kid+kie+kift2 $ i w i ( m ,  

Using these symbols, the following necessary condition for the critical state 
will be proved. 

generate and if fQ(1,1)1 # 0, then Eqs. (6)-(8) are equivalent to Eqs. (6’)48’) 
with 

Critical State Criterion. If the functions rj(m (i = 1 . . . . .  N) are nonde- 

J Q1 I = 0 (critical state equation). (8’) 

Root The significance of the regularity condition I Q(1,l) I f 0 is dis- 
cussed in Refs. 9 and 10. Since, as mentioned in the preceding paragraph, the 
equivalence of Eqs. (6) and (7) and of Eqs. (6’) and (7’) has been shown earlier, 
the task is to prove, on this assumption, the equivalence of Eqs. (8) and (8’). 
To this end, the following matrix is introduced: 

I 0 . . .  0 . . .  1 0 . . .  0 l o  

5 2 1  ... 5 2 N  

... ... . . .  
ZNN P1 . . .  
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1452 BEERBAUM ET AL. 

N N N 

The matrix Q1 is obtained from Q by replacing the elements 42bii byybi = 

DI cl/&bbj ('j = 1, . . . , N ;  b = 1, . . . , nj) accounting, however, for the special 
relation to be applied here: 

N 

By subtracting in IQ(3,3)1, successively, the second column from the other 
N - 1 columns possessing the number 1 in the first line, and then the second 
line from the other N - 1 lines possessing the number 1 in the first column, 

it may easily be shown that IQ(1,l)l = -15(3,3)1, resulting in 15(3,3)( f 0. 
Now, the proof will be performed in two steps. Assuming the validity of 

Eqs. (6) and (7) or Eqs. (6') and (7'), it will be shown 1) that Eq. (8) is equva- 
lent to lQ I = O  and 2) that lQll  = O  is equivalent to lQl I = 0. 

According to Eqs. (6) and (7), the variations 6(J/w0 fulfill the minimum 
condition 

N N 

The minimum has to be taken over all variations obeying Z JS(J/iWj(Jf))dM 
= 0. Applying Lagrange's method of undetermined multipliers, it was shown 
earlier [7] that S(J/W),  fulfills Eq. (17) if and only if 

N 1 " N  N 

, y, , . . . , y 1 , . . . , YnNN)T is the solution of the H e r e y = ( y l  ,yl  , . . .  
linear system of equations Q y  = 0, and no = 1. Due to the specific structure 

of the matrix 5 (see preceding paragraph), Eq. (18) may be simplified to read 

- 0" 1 N 

N N  
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APPLICATION OF CONTINUOUS THERMODYNAMICS. I 1  1453 

or, applying the symbol introduced by Eq. (16), 

N 

According to I Q I = 0 (spinodal equation in nonreduced form) and 

lc(3,3)1# 0, the solutions of the system of linear equations Q y = 0 by 
using Cramer's rule becomes 

N C V  

I V .  u 

Here Qa' signifies a matrix obtained from Q by replacing the column a in cki by the second column from 5'' (k = 0,  . . . , N )  and applying 
1Q21(3,3)1 = -lQ(3,3)[.  In Eq. (2O),F2l is an arbitrary real number. Com- 
bination of Eqs. (19) and (20) results in the statement: The relation 
6 (z/RT)* = 0 is fulfilled if and only if 

- N 

- 
i , j .p=l  a=1 b = l  c=l 

N 

To conclude the first step of the proof, lQ, I is developed with respect 
to the third line according to Laplace's theorem 
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1454 BEERBAUM ET AL. 

(22)  

Introducing naa = no t nl t + n,-l t 0, the relation 

N 

is valid. Since, according to the assumptions, the third line of Q is a linear 
combination of the others and since Q is symmetric, there exist quantities 

N 

N 

Replacing the elements qzQii  in lG(npc,njb)I(lp - 1'1 t I C  - 21  + 0) according 
to Eq. (24), results in a sum of determinants which, for I v - p I t Id - CI  # 0, 
equals zero since two equal lines occur. In the case 1v - p I t Id - cl = 0, how- 
ever, some lines and also some columns can be rearranged to yield 

lc((npc,njb)l = ?cp(-l)nPcinjb IGb'(3,3)1. (2  5 )  
N 

The formula is also valid for Ip - 11 t Ic - 21 = 0 if y 2 1  = -1. Furthermore, 
according to  Cramer's rule, Eq. (24) results in 

Combination of Eqs. (22), (23) ,  (25) ,  and (26)  leads to 
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APPLICATION OF CONTINUOUS THERMODYNAMICS. I1 1455 

In combination with Eq. (21), this relation provides the desired statement: 
63(c/R290 equds zero if and only if lQl I = 0. In this way, a critical state 
equation for the nonreduced problem is established. 

analogous xguments leading to I Q( 1,l)I = -I Q (3,3) I, Eq. (1 5 )  results in 

N 

In the second step of the proof, the connection with I Ql I is provided. By 
N 

with 

'v N N .. N - 
qab' = 4abz1 + 6a161 b q  11 l 1  - 6 , l q  1bli - 6 1 b q a l i 1  

t a z = t a ' - 6 a l t 1  - 1  _ .  N .  

( i , j = l ,  . . . ,  N ; a = 1 + 2 6 1 i ,  . . . ,  ni; 

b = 1 + 6 1 j ,  . . . , nj). 

According to Eq. (4), the relation 

'v - - . - .  
applies. Equation (28) and qabii = a2 r /arazarbl + 6 jirabi result in 

leading to Qg = @' (i # 1) and Q1' = Q-li. Furthermore, Eqs. (23), (25), and 
(26) lead to 
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1456 BEERBAUM ET AL. 

According to Eq. (20) and to Z Tl = 0 (i.e., the first line of the system of 
of equations cT= 0), the relation E I el '(3,3) 1 = 0 also is valid, resulting in 
the possibility to eliminate I Q (3,3) I in Eq. (29). Furthermore, introducing 
the matrix Qcp which is obtained from Q by replacing thz elements q b J p  by 
4bzi1 (j= l , ,  , . , N ; b =  1 + 6 1 j , .  . . ,n,),theequality lQcP(3,3)1=-lQ,P(1,1)1 
applies. These considerations permit a reformulation of Eq. (29) leading to 

N 

with 
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APPLICATION OF CONTINUOUS THERMODYNAMICS. I I  1457 

N N 

Inserting this result into the formula for tai - 6a1 t l  
(4) and (14), the relation 

and considering Eqs. 

(i = I , .  . . , N ; a  = 1 + 61 i ,  . . . , ni) 

N 

is obtained. Therefore, the equality I Q I = lQl I applies and, hence, the proof 
is completed. 

There are two additional remarks: 
(1) The proof shows that, for all variations S ( J , W ) ,  fulfilling Eq. (7), the 

relation 
number. 

( 2 )  The theorem was proved assuming nl > 2. For n1 = 2 ,  the proof ap- 
plies too; merely in Ql the line with Q-" 0' = 1 ,  . . . , N) does not 
exist. For nl = 1 (e.g., if Substance 1 is a solvent) the matrix Q1 ex- 
hibits further simplifications since then i,j,p # 1 and, therefore, 

((?/RT), = alel I/IQ(1,1) 1' is valid where a is a real 

All special cases considered in the next section belong to this type. 
The corresponding critical-state equation reads (Q-2' = Q2'( 1 ,-); i = 2, 
. . * ,N) 
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lQil= 

for n2 > 1 

t2 . . .  

Q22 . . . 

Q32 . . . 
_ _ - -  

Q" ...  

tN 
Q2N 

Q3N 

e" 
- -  

BEERBAUM ET AL. 

for n2 = 1 

t2 . . .  tN 
Q32 ... Q3N 

Q42 . . . Q4N 
- - - - - - - 

Q N 2  . , . Q" 

= O  

DISCUSSION 

The application of the theorem proved in the preceding paragraph leads to 
a very large reduction of computer time and of needed storage capacity com- 
pared to the traditional Gibbs determinant criterion [8]. To illustrate this, a 
mixture consisting of three polymers, each with approximately 1000 molecu- 
lar species, will be considered. Then, according to Gibbs, the stability deter- 
minant and the critical state determinant possess approximately the order 
3000 X 3000. Just the partial differentiation of the stability determinant with 
respect to these 3000 variables would be enormously time-consuming. Assum- 

ing the cE function to depend on three moments of the (unnormalized) dis- 
tribution density function for each polymer (i.e., the segment fraction, the 
number average, and the weight average), the proved theorem provides a reduc- 
tion ofGibbs determinants to determinants (lQl,lQl I )  of the order 8 X 8. 

The established critical-state theorem includes many cases known from the 
literature (the Gibbs criterion among them). This shall be verified for four ex- 
amples. Examples 1 to 3 refer to cases treated in the framework of traditional 
(i.e., discrete) thermodynamics. In these cases the following manner .of repre- 
sentation was chosen: 

a) gtatement of the nonlinear part of the segment-molar Gibbs free energy 
(? for the problem under consideration in traditional form. 

b) Statement of the specifications needed to reduce the general problem 
treated inJhis - paper @the - example under consideration. In transform- 
ing from Gdiscont to Gcont, additional linear terms can be neglected. 

c) Application of these specifications to the general criterion (6')-(8'), re- 
sulting in the special criterion desired. 
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APPLICATION OF CONTINUOUS THERMODYNAMICS. I I  1459 

For Example 4 that is formulated by continuous thermodynamics, these 
topics apply correspondingly. In Cases 1 and 2, a different numbering of the 
substances, starting with 0 instead of 1, has to be accounted for also. 

1. Mixture of Discrete Species [81 

= 0. 

In this case Q = b = c = 1 always applies and, hence, 

On transforming to molar quantities, the well-known Gibbs criterion results. 

2. Solution of a Polydisperse Polymer in a Solvent [ I  1, 121 

spectively, and the different polymer species are identified by the additional 
i n d e x j = l ,  . . . ,  P. 

Here the solvent and the polymer are identified by the indexes 0 and 1, re- 
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1460 BEERBAUM ET AL. 

P P 

b) The total interval fromMo,l up to@*' is divided into P disjunct par- 
tial intervals pj touching each other. The length of the jth partial inter- 
val is signified by I /+ I. 
no = l;nl = n ; k l , = k ,  (s=  1,. . . ,n), 
Wo(M) (Mo,o -A@*')-' ;ro(M) 1, 

Wi (M) = @j/($1 IPjl); rl (W = mj 

Hence, 6' = G I ;  r,' =Mks. 
if M E Pj. 

- 

P 

The critical state equation reads [ 131 

lei I 
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APPLICATION OF CONTINUOUS THERMODYNAMICS. I I  1461 

where, according to i = j = p = 1, 

b) N =  2; nl = n2 = 1; G i  = $i 

wi(M)= @i,j/($iII.li,jl);rj(M)=mi,j i f M E ~ . l i , j  

( i =  1 , 2 ; j =  1 , .  . . , P i )  

Pi 
c) rllz = +imw,i, r,il = C Gi,jmi,j2 = +imw,imz,i 

j =  1 

- .  

(mw,i and mz,i are the weight-average and z-average for Polymer i). In 
this case, Q and Ql are 1 X 1 matrixes with 
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1462 BEERBAUM ET AL. 

4. Mixture Containing Several Solvents and Several Polydisperse- 
Polymers Described by a Momentum-Independent Excess Part G' [I I 

The Z solvents are identified by the indexes i = 1, . . . , Z < N and the N-I 
polymersbyi=Z+l , . .  . , N .  

N 
a ) - =  E +i ___ +i (iiwI(W ln +iwitW dM 

ri(W i= 1 i=I+ 1 
RT 

applies for i, j ,  p = 2, . . . , N. The difference with respect to Eq. (5 1) in 
Ref. 1 is due to the elimination of FIN = +N in Ref. 1 but of Fl = 
in this paper (for the sake of uniformity). 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
8
:
1
7
 
2
4
 
J
a
n
u
a
r
y
 
2
0
1
1



APPLICATION OF CONTINUOUS THERMODYNAMICS. I I  1463 

REFERENCES 

[ l ]  H. Kehlen, M. T. Ratzsch, and J. Bergmann,J. Macromol. Sci-Chem., 

[2] P. J. Flory, f. Chem. Phys., 10, 51 (1942). 
[3] M. L. Huggins,Ann. N Y. Acud. Sci., 43, 1 (1942). 
[4] M. T. Wtzsch, H. Kehlen, and J. Bergmann, 2. Phys. Chem. (Leipzlg), 

[5] M. T. Ratzsch and H. Kehlen,J. Macromol. Sci.-Chem., A22, 323 

[ 6 ]  J. Bergmann, H. KeNen, and M. T. Ratzsch, Z.  Angew. Math. Mech., 

[7] S .  Beerbaum, J. Bergmann, H. Kehlen, and M .  T. Ratzsch, Zh. Fiz. 

[8] J.  W .  Gibbs, Collected Works, Vol. I: Thermodynamics, Yale Univer- 

[9] K. Solc and R. Koningsveld,J. Phys. Chem., 89, 2237 (1985). 
[lo] J. Bergmann, H. Kehlen, and M .  T. Ratzsch, Zbid., In Press. 
[ 1 1 ] M. Gordon, P. Irvine, and J. W .  Kennedy, J. Polym. Sci., Polym. 

[12] P. Irvine and M .  Gordon, Proc. R. SOC. (London),A375, 397 (1981). 
[ 13 J S. Beerbaum, J. Bergmann, H. Kehlen, and M .  T. Ratzsch, Zbid., 

[I41 R. Koningsveld and L. A. Kleintjens, Br. Polym. J., 9, 212 (1977). 

A24, 1 (1987). 

264, 318 (1983). 

(1985). 

65, 343 (1985). 

Khim., 61, 2366 (1987). 

sity Press, New Haven, Connecticut, 1948. 

Symp., 61, 199 (1977). 

In Press. 

Received February 24, 1987 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
8
:
1
7
 
2
4
 
J
a
n
u
a
r
y
 
2
0
1
1


